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LE'ITER TO THE EDITOR 

Tricritical points of trails, their Euler digraphs and graphs: 
exact results on the Sierpinski gasket 

I S Chang and Y Shapir 
Department of Physics and Astronomy, University of Rochester, Rochester, N Y  14627, USA 

Received 17 May 1988 

Abstract. The collapse transitions of trails, their oriented graphs and silhouettes (Eulerian 
digraphs and graphs, respectively), as the fugacity for crossings is increased, are investigated 
by exact decimation on the ZD Sierpinski gasget. Recursion relations between the generating 
functions for the three basic configurations on consecutive levels are derived. For all models 
we find tricritical points which move along a line in a four-dimensional parameter space, 
as the fugacity is varied, and terminate at a decoupled first- or second-order multicritical 
point. It  suggests these models belong to distinct universality classes which differ from that 
of self-attracting polymer chains which do not undergo a collapse 0 transition on this 
fractal lattice. 

Lattice models such as random walks (RW), self-avoiding walks (SAW) and self- 
attracting self-avoiding walks (SASAW) have been the focus of much attention [ 13. 
They provide models for polymer chains in different regimes, and from the statistical 
mechanics viewpoint they serve as the generic examples to analyse scaling and fractal 
properties [2]. In the critical phenomena language the infinite RW is equivalent to a 
free (Gaussian) system at its critical point. The SAW is a critical O ( n )  model with n = 0 
components [2]. The SASAW changes its behaviour from that related to a continuous 
phase transition (like the SAW) to a first-order phase transition into a collapse phase 
at low temperatures [2]. At the intermediate Flory 0 temperature its behaviour is 
described by a tricritical point of the O( n), n + 0 spin system [2-41. In this regime the 
upper critical dimension changes from four to three and the 3~ behaviour is Gaussian 
like a RW (but with logarithmic corrections) [5]. 

For a long time the 0 point of SASAW was the only known tricritical point of 
constrained walks. Recently new tricritical points were found in two other such models 
[6-91: trails and their silhouettes. Trails [lo] are lattice walks which are not allowed 
to step more than once on each bond but may self-cross through an already visited 
site (figure l(c)) .  If only the shadows (figure l (a ) )  of the trails are considered, the 
so-called silhouettes model is obtained [6] (they are the corresponding Euler graphs). 

In the present letter we introduce yet another model interpolating between trails 
and silhouettes which we call digraphs. These are the oriented graphs obtained while 
keeping track of the trails' direction on the bonds, but discarding the chronological 
ordering in which the bonds were visited (figure 1( b ) )  [ 113. The number of Euler trails 
associated with a given digraph is related to the number of spanning trees and may 
be expressed as the cofactor of a matrix simply related to the connectivity matrix. The 
problem of how many digraphs are associated with a given silhouette (Euler graph) 
is still unsolved [ l l ] .  The silhouettes and digraphs provide models for polymeric 
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l a )  ( b )  ( c l  

Figure 1. (a )  A typical Eulerian graph (silhouettes) with two intersections. ( b )  One of 
three digraphs with the silhouette depicted in ( a ) .  ( c )  The two possible trails on the 
digraph in ( b ) .  

networks with tetrafunctional units formed by one type of monomer and by regular 
copolymers, respectively. 

As suggested by Shapir and Oono [6], a fugacity w is associated with each 
intersection in order to achieve control over their averaged concentration. For a small 
concentration of intersections all these configurations share the long-distance scaling 
properties of SAW. For a large concentration (large fugacity) they will collapse into a 
compact phase. In between they may exhibit tricritical behaviours (similar to the 0 
point). The questions of interest presently debated are whether each of these tricritical 
points is associated with a new universality class or whether part of them share the 
same one (or that of the 0 point) [6-91. 

In the renormalisation group (RG) approach [6] near 4 ~ ,  only the silhouettes exhibit 
a new tricritical fixed point of order E"' ( E  = 4 - d )  [6]. So the possibility of a 0 point 
behaviour for trails and digraphs cannot be ruled out based only on momentum-space 
RG arguments. Series expansions in 3~ indicate non-Gaussian behaviour for trails and 
silhouettes [7-9, 121. They exhibit different exponents and for both models -yr < 1 (for 
silhouettes: Y, < f as well and both values of the exponents agree with the extrapolation 
of the E"* expansion to E = 1 [9]). In 2~ the exact exponents of the 0 point were 
conjectured recently [13]. For the trails, series expansions [7,8,  121 and extensive MC 

calculations [ 141 indicate different values for some of the exponents. This is especially 
true for the crossover exponent 4 and specific heat exponent a, since v, 3 f and - y , 3  1 
for both trails and silhouettes. No results for 4 and a of silhouettes in 2~ are yet 
available. The configurations of digraphs (both in 2~ and 3 ~ )  are only now being 
enumerated. 

To shed more light on all these questions we have decided to explore their tricritical 
behaviour on the 2~ Sierpinski gasket ( S G )  on which exact decimation is possible 
[15,16]. Independent studies of SASAW on SG all agree that no collapsed phase and 
no 0 point exist on the 2~ SG [17-201. On the 3~ SG the tricritical collapse occurs (as 
for branched polymers on both 2~ and 3~ SG [19,20-221). 

We find tricritical collapses for trails, digraphs and silhouettes on the 2~ SG which 
lends further support for them to belong to different universality classes, distinct from 
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the 0 point. Although the results on the SG may hint at these conclusions and provide 
further insight into the relations between these models, some caution is in  order. 
Indeed because of its special structure and its finite ramification the behaviour on this 
fractal is often not representative [15] as manifested, e.g., by the absence of the 0 
point [ 19,20-221. 

The recursion relations on the 20 SG involve three restricted generating functions 
depicted in figure 2. On the n level of the iterative extension of the gasket they are 
as follows. 

X h 1 

(a)  (bl 

Figure 2. The three restricted generating functions. 

( a )  x,, those trails (digraphs or graphs) going into the triangle by one apex and 
leaving from it by another apex without visiting the third apex (figure 2(a)) .  

( b )  h,, those which go into the triangle and leave it by a different apex but do 
visit the third one (figure 2(b)). 

(c) l , ,  those which go into the triangle and leave it through the same apex (figure 
2(c)). 

The recursion relations which relate (xntl, h,+, , lfltl) to (x,, h,, I , )  were derived 
by enumerating all possible configurations. We have assigned a local fugacity w for 
each new intersection (or loop, since on the SG it is equivalent) formed on the ( n  + 1 )  
level not accounted for by  the I ,  of the n level. As an example we have depicted in 
figure 3 all configurations which contribute to h , + l .  

The recursion relations we obtain are 

x,+~ = x’, + 2x,h, + 2x2, h, + hZ, + x’, + Ah;x, w ( l a )  

h,+, =2x,h~+2Bx,h,l ,+x~,h,+ Ch:I,w+ Dhiw (1b) 

1,+1 = h’,w+ Elzw. ( I C )  

The coefficients (A, B, C, 0, E )  change according to the models and are ( 1 ,  1 , 1 , 1 , 1 )  
for silhouettes, (2 ,2,3,2,6)  for digraphs, and (2 ,2,6,2,  16) for the trails. 

The recursion relations in (1) have been analysed and the general flow diagram is 
exhibited in figure 4 for the silhouettes model with w = 1. There are four different 
fixed points (w). 

(1) The SAW FP (x*,  h*, I * )  = (0.618,0,0) analysed in [17-221 with size exponent 

(2) A discontinuity FP (O,O, 1 )  of the ‘hard triangles’ model on the SG,  with 
VSAW = 0.799. 

Y = 1/6 = In 2/ln 3 = 0.631. 
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A 
Figure 3. All configurations on the n level contributing to h,,, . 

J 
h 

Figure 4. The flow diagram in the parameter space (for silhouettes at w = 1). The fixed 
points (1)-(4) are discussed in the text. 
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(3) A decoupled first- or second-order multicritical point (0.618,0, l ) ,  at which the 
above two behaviours of FP ( 1 )  and (2) occur simultaneously and independently. This 
FP is unstable in the direction perpendicular to the h = 0 plane with a crossover exponent 
4,, = 1.44.  This flow, for h > 0, is towards another fixed point. 

(4) The tricritical FP (0.2960,0.1819,0.9969). This FP is unstable in two directions 
(has two relevant operators and two diverging length scales) and is stable in the third 
direction and is, therefore, a tricritical point. Linearisation of the recursion relations 
around this FP yields the eigenvalues: 2.99, 2.22 and 0.59. The eigenvector correspond- 
ing to the largest eigenvalue has non-trivial projections on all three axes and, therefore, 
controls the silhouettes’ size dependence with the exponent: 

In 2 
In 2.99 

vg=-- - 0.632 

(the subscript g stands for ‘geometrical’). 
As expected this value is intermediate between the SAW swollen size exponent 

VSAW-0.799 and that of the compact phase U,= l/d-x0.631. We note that vg is quite 
close to the latter; a similar observation has been made for the tricritical point of 
branched polymers on the SG [20-221. This is not surprising since the silhouettes 
model is also describing branched polymers with vertices of even degrees only (if the 
two ends are joined and close the path [6]). These configurations have the same size 
exponent as the ‘open’ silhouettes. The second positive exponent controls the diver- 
gence of the ‘thermal correlations’ 

In 2 
In 2.22 

= - - - 0.869 
(3) 

where IAEJ is 
but here the 

the distance from tricritical point (usually in the temperature direction 
scaling field includes all three couplings because of the non-trivial . -  

eigenvectors). The crossover exponent at the tricritical point is 

4 = up/ vth = 0.727. (4) 

The third exponent in the direction of the irrelevant scaling field yields the exponent 
which controls the non-analytic leading-order corrections to scaling: 

-vg  In 0.59 
A =  - - 0.480. 

Vnegative In 2-99 

As the local fugacity for intersections is increased to w > 1,  FP ( 1 )  does not change 
and (2) and (3)  change trivially to (O,O, w-’/*) and (0.618,0, w - ’ l 2 ) .  However, due to 
non-linear coupling, the tricritical point drifts continuously nearer to the h = 0 plane. 
At the same time the tricritical exponents are varied. There is, therefore, a line of 
tricritical point as w is varied [ 191. This unusual dependence of the scaling properties 
on a local parameters is certainly a manifestation of the specific geometric properties 
(finite ramification, etc) of the SG. 

The line of fixed points ends at a critical value w, = 4 at which the tricritical FP 

merges into the decoupled FP (3) in the h = 0 plane. For w > w, the decoupled FP (3)  
is stable and the continuous and discontinuous transitions are decoupled without any 
tricritical behaviour. 
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Table 1. The tricritical points and their exponents. 

Model W X *  h* I* yg 4 h 
~~~ ~ 

Silhouettes 1 0.296 0.182 0.997 0.632 0.727 0.480 
Digraphs 1 0.330 0.162 0.406 0.633 0.742 0.314 
Trails 1 0.618 0 0.25 Decoupled fixed point ( w  = w,)  

0.5 0.406 0.131 0.352 0.631 0.756 0.2 17 

The general features of the behaviour in digraphs is similar to that of silhouettes. 
Their tricritical properties for w = 1 are given in table 1 and their tricritical line merges 
to the decoupled point at w, = :. More details will be published elsewhere. 

For trails w = 1 is exactly the critical value at which the tricritical point (4) (which 
exists for w < 1) merges into the decoupled point. This is probably not a coincidence 
and it may be observed directly by looking at the recursion relation for h, at the w = 1 
decoupled point, which is 

h,,, = h, + 2.736h; 

namely, at w = 1 the decoupled point is marginally unstable. We therefore present in 
table 1 the tricritical properties of trails at w =; as well. 

To summarise, we have analysed the tricritical properties of trails, their digraphs 
and their silhouettes on the ZD SG.  Contrary to the absent 0 point, we find tricritical 
points for all three models. This is consistent with each of them being in a distinct 
universality class at its collapse transition. More extensive results will be published 
in forthcoming works. 

We acknowledge S Ramaswamy for valuable help in the first stages of this investigation, 
and A Guha and H A Lim for on-going discussions on these issues. The work is 
partially supported by a grant from the Eastman Kodak Company. 
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